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1 EOS Scalings

In this short report, we consider two types of equation of state (EOS) scalings, which will be referred
to as type I (or density scaling) and type II (or Thomas-Fermi scaling). EOS scalings are used to correct
for the fact that EOS tables are constructed with a fixed isotopic composition. Even if the isotopics in a
computational zone are evolving through chemical or nuclear reactions, the EOS lookups for pressure and
energy (and their derivatives with respect to density and temperature) aren’t normally cognizant of this fact.
The EOS scalings are an attempt to fix this shortcoming. They typically modify the incoming density and/or
temperature based on ratios of isotopic quantities (like < A >table / < A >zone, < Z >table / < Z >zone),
and then modify the table lookup values. In this way, the EOS can dynamically respond to the changing
isotopics.

Type I is the simpler scaling and has the following form for the independent variables:

ρ′ = α ρ (1)

T ′ = T , (2)

where ρ′ is the modified density used for the table lookup and α is given by

α ≡ < A >table

< A >zone

(< Z >zone +1)
(< Z >table +1)

. (3)

The table lookups then give modified values of pressure and specific energy (denoted by P′ and E′ respec-
tively) which are related to the desired values of P and E by

P = P ′ (4)

E = α E′ . (5)

A slightly more involved scaling, referred to as type II, can be used when running the code in 3T mode.
The scalings for density and temperature are now given by

ρ′ = a ρ (6)

T ′
ele = b Tele (7)

T ′
ion = b Tion , (8)

where a and b are given by

a ≡ < A >table

< A >zone

< Z >zone

< Z >table

λ3
table

λ3
zone

(9)

b ≡ λ2
table

λ2
zone

, (10)

and λ takes the form of
λ ≡ e(

2
3

<Z ln Z>
<Z> ) . (11)

Note that if the isotope list for a given material only involved a single value for Z , then λ would reduce to

λ = Z2/3 . (12)

The scalings for the dependent variables are

Pele = cele P ′
ele (13)

Pion = cion P ′
ion (14)

Eele = dele E′
ele (15)

Eion = dion E′
ion , (16)
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where the c and d coefficients are given by

cele ≡ λ5
zone

λ5
table

(17)

cion ≡ λ5
zone

λ5
table

< Z >table

< Z >zone
(18)

dele ≡ a cele (19)

dion ≡ a cion . (20)

Often we are interested in derivatives of pressure or specific energy with respect to density or tempera-
ture. A simple application of the chain rule from calculus provides the necessary formulas:

∂Pele

∂ρ
=

∂Pele

∂ρ′
∂ρ′

∂ρ
= a cele

∂P ′
ele

∂ρ′
(21)

∂Pion

∂ρ
=

∂Pion

∂ρ′
∂ρ′

∂ρ
= a cion

∂P ′
ion

∂ρ′
(22)

∂Eele

∂ρ
=

∂Eele

∂ρ′
∂ρ′

∂ρ
= a dele

∂E′
ele

∂ρ′
(23)

∂Eion

∂ρ
=

∂Eion

∂ρ′
∂ρ′

∂ρ
= a dion

∂E′
ion

∂ρ′
(24)

∂Pele

∂T
=

∂Pele

∂T ′
∂T ′

∂T
= b cele

∂P ′
ele

∂T ′ (25)

∂Pion

∂T
=

∂Pion

∂T ′
∂T ′

∂T
= b cion

∂P ′
ion

∂T ′ (26)

∂Eele

∂T
=

∂Eele

∂T ′
∂T ′

∂T
= b dele

∂E′
ele

∂T ′ (27)

∂Eion

∂T
=

∂Eion

∂T ′
∂T ′

∂T
= b dion

∂E′
ion

∂T ′ . (28)
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2 Creating an EOS Object with EOS Scalings

To create an EOS object in a kull python script that makes use of EOS scalings is very straightforward.
Basically, we need to add the keyword argument isotopic scaling to the EOS constructor, along with the
value for this argument (choices are “density scaling” or “Thomas Fermi” or “None”). For example, if we
want an EOS for SiO2 (which is given by LEOS table 2210) to use the type I scaling, the correct syntax is

# Make a LEOS item with density-type EOS scaling
leosFactory = eos.LEOS(2210,

isotopicScaling="density scaling")

If we want the type II scaling for a 3T application, use

# Make a LEOS item with Thomas-Fermi EOS scaling
leosFactory = eos.LEOS(2210,

isotopicScaling="Thomas Fermi")

For some ICF applications, we may want to generate an atomic EOS that uses an EOS scaling. If we
want to create an EOS for an atomic mixture of boron (LEOS number 50) and stainless steel (LEOS number
3010), we should do

leosFactoryB = eos.LEOS(50,
isotopicScaling="Thomas Fermi")

leosFactorySST = eos.LEOS(3010,
isotopicScaling="Thomas Fermi")

mixEOS = eos.MixEos([leosFactoryB, leosFactorySST],
[(0.0, 10.5), (10.5, 1000.0)],
equilibrateOption="TotalPressure")

Note that with an atomic or mix EOS, the tables should be in increasing “Z-order”. That is, the < Z >
for boron is smaller than the < Z > for steel. Also, the second line of the mixEOS constructor indicates
the “Z-ranges” that will be used to associate isotopes with each table. That is, isotopes with a Z between 0
and 10 will associated with the boron table, while isotopes with higher Z-values will be associated with the
steel table. The third line specifies the property that will be brought into equilibrium during the Newton-
Raphson iteration in order to compute the sub-densities that are used for the individual table lookups. The
possible choices for the equilibrateOption keyword are “TotalPressure”, “AnalyticElectronDensity”, “Tabu-
larElectronDensity”, and “ChemicalPotential”. Refer to UCRL-TR-224230, “Combining Equations of State
in Kull” for more information on the atomic equation of state.
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